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On the response of a sphere to an acoustic pulse 
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The motion of a rigid sphere responding to the passage of an acoustic pulse is 
considered by means of a simple approximate model which neglects the diffraction 
of the pulse front. The model is based on a solution of the equivalent inviscid 
problem and assumes that, initially, the flow field around the sphere corresponds 
to the steady incompressible flow of an inviscid fluid over a sphere at rest. For 
t > 0, the motion is studied by means of the unsteady Stokes equations. Results 
for the sphere’s velocity, displacement and drag are obtained in closed form in 
terms of tabulated functions and compared with results obtained by using the 
Stokes drag. It is found that, when the ratio of gas density to sphere material 
density is finite, the initial response of the sphere differs considerably from that 
predicted by the use of the Stokes drag. However, when the ratio of gas density 
to sphere material density is infinitesimal, the differences disappear. These re- 
sults may be of some importance in the study of shock-induced droplet collisions 
in aerosol clouds. 

1. Introduction 
We consider a small rigid sphere initially at rest in a viscous gas and later set 

into motion by the passage of a very weak shock wave. The motion is of interest 
because of the possibility that, when a weak shock wave is propagated in a liquid- 
droplet aerosol cloud, collisions between different sized droplets may be induced 
as a result of their different response to the waves. This possibility has been 
mentioned with regard to droplet coalescence in thunderstorms (Goyer 1965a, b;  
Temkin 1969) and in rocket nozzles (Crowe & Willoughby 1966; Marble 1967), 
and is currently under experimental investigation (Temkin 1970; Yun 1970). 

In  order to compute droplet trajectories required to study the above possibility 
analytically, it is necessary to know at all times the viscous drag acting on the 
droplets. This information is lacking and the droplets’ response to weak shock 
waves is sometimes calculated by means of Stokes’s law, or by means of ex- 
perimental correlations for the drag (Hoenig 1957). Stokes’s law is probably more 
adequate when the shocks are very weak, but the transient character of the 
problem precludes its use to investigate the initial motion of the droplets. This 
initial response is, however, a main factor in determining whether a collision 
between a given droplet pair will occur after the passage of the wave. The reason 
for this is that the response of different sized droplets is determined, in part, by 
their inertia, and initially inertia effects are dominant. 

In  the present work, we make use of a simple model to study the motion 
described above, assuming that droplet deformation does not occur. The model 
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considers an acoustic pulse, propagating in an unbounded viscous non-heat- 
conducting gas initially at rest and reaching a freely suspended sphere of radius 
R at time t = 0. The gas velocity uo behind the pulse front is assumed uniform 
and small compared with the pulse speed a. The sphere is assumed to be small 
and rigid and the ratio 6 of gas density p to sphere material density is supposed 
small. Now, the pulse front passes over the sphere in a time of order Rla. During 
this time viscous effects develop around the sphere, but are limited to a layer 
with a thickness of order (vR/a)*, which is small compared with R for certain 
values of R, a and the gas coefficient of kinematic viscosity v. Under these con- 
ditions, the initial flow over the sphere can be studied by means of inviscid 
equations in terms of incident and scattered wave potentials. This is done in the 
appendix, where it is shown l,hat, as is expected on physical grounds, the inviscid 
flow over the sphere becomes steady in a time of order B/a, and that this steady 
flow corresponds to the inviscid incompressible flow over a movable sphere. 
Furthermore, in that time the sphere has acquired sl velocity Up - +6u0 which 
is much smaller than uo because of our assumption about 6. We adopt an approxi- 
mate model based on these results to study the motion of the sphere. In  this 
model it is assumed that at time t = 0 the inviscid flow around the sphere is 
fully developed, and that the sphere is still at rest. Fort > 0 the motion is studied 
by means of the linearized equations of motion of a viscous incompressible fluid. 
The sphere’s drag can then, in principle, be obtained by solving Basset’s integro- 
differential equation (Basset 1888; Pearcey & Hill 1956; Yih 1969). However, 
in the present case, it is simpler to derive the solution from the unsteady Stokes 
equations using the Laplace transformation. We use this approach to obtain the 
sphere’s velocity, displacement and drag. Our results are given in closed form in 
terms of tabulated functions. Numerical comparison of these results with those 
obtained using the Stokes drag shows that significant differences occur, as 
expected, only for small non-dimensional times, although mathematically both 
solutions behave quite differently for t -+ co. Further, the differences decrease as 
6 is made smaller and disappear in the limit 6 -+ 0. 

2. Analysis 
2.1. Basic equations 

We now consider the Stokes flow of a viscous incompressible fluid over a movable 
sphere. The motion is referred to  axes moving with the sphere, so that if we non- 
dimensionalize velocities with u0, distances with R, pressure with puo/R and 
time with R2/v the equations of motion are 

v .u  = 0) (1) 

.and u = IJ, on r = 1 for t 2 0, 

where p is the gas coefficient of viscosity. We take the main flow to be along the 
x axis, so that the motion is symmetric about the axis. The fluid velocity has 
then only radial and tangenljial components u, and uo, respectively, which for 
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t 2 0 satisfy the conditions 

u,=Upcos8, uo=-Upsin8 on r = l ,  (3) 

where 8 is the polar angle. At large distances from the sphere the flow is uniform 
and parallel to the x axis. Consequently 

u-te,  for r - t  00, 

where el is a unit vector along the x axis. Now, at  t = 0, the steady flow around the 
sphere is inviscid and irrotational. The radial and tangential velocity components 
are then given by (Milne-Thompson 1950, p. 464) 

u,(r, 8 , O )  = (1 - l/r3) cos 8 

uo(r, 8,o) = - (1 + i/Zr3) sin 8. 
(4) 

(5) and 

To completely specify our system we need two more equations; these are the 
equation for the drag on the sphere and the sphere’s equation of motion. Now, 
if the drag is non-dimensionalized with 67r,uRu0, we obtain 

F, = [ - p + ~ ~ ] c o s e -  [%--+-- a’% ue r r la,] a0 sin8’ \,=I sinode. (6) 

Pinally, the non-dimensional equation of motion of the sphere can be written as 

F, = (2/96) (dUp/dt). (7) 

Because of symmetry, the fluid velocity components can be derived in terms 
of a stream function $ by means of 

Equation (2) can also be written in terms of $ by putting u = V x B, where 
B = (0, 0, $1. sin 8 )  is solenoidal. The result is 

where 

The boundary and initial conditions on $ are 

a$/aO = Up sin 8 cos 8, a$/& = U, sin2 8 on r = 1, (11) 

$/r2+isin28 as r + c o  (12) 

and $(r,  8 , O )  = $o = &r2sin28(1 - l/r3). (13) 
Once $ has been determined, u, and uo can be obtained from (8). Similarly, the 
pressure can be obtained from 

and 
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Because of the boundary and initial conditions, $ is of the form 

$ = sin2 Of ( r ,  t ) .  
The function f ( r ,  t )  satisfies 

together with the conditions 

f(l,t) = gu,, af(l,t)/ar = up, 
f ( r ,  t)/r2 -+ + for r + co 

f ( ~ ,  0) = fo = B(r2- l / r ) .  

2.2. Transformed equations 

and 

We now transform the above system using the transformation f(y, t )  +f(r,  s ) ,  
where 

The differential equation forpis, with (d2/dr2- 2/r2) fo = 0, 

with 

and 

The transformed drag is given by 

where we have used the fa.ct that, on r = 1, aG,./ar = 0 and aG,/aB = Go. The 
transformed equation of motion of the sphere is, with Up(0) = 0, 

$z = (2s/96)Up, ( 2 5 )  

and the transformed equations for the pressure are 

and 

Now, the general solution of (21) is 

(27) 

where (n/ZZ)B I&Z) and (n/ZZ)$ Kg(Z) are modified spherical Bessel functions 
of the first and third kind, respectively. This solution can be simplified because 
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of the conditions at infinity, which impose D = 0 and B = 1/2s. Furthermore 
(n-/2Z)* K&Z) = (7r/2Z2) (1 + 2) exp ( - Z), so that 

- A 1  C f = -+-r2+- (1 +sir)  exp (-sir). 
r 2s sr 

The constants A and C can be obtained from the conditions a t  r = 1 given by (22). 
Applying these conditions, we obtain 

A = (Dp - l / ~ )  (S + 3 d  + 3)/2s2 

and C = - #(Op - 1/81 exp 84. (30) 

(29) 

The transformed sphere velocity Dp can be obtained from the drag equation 
and from the sphere’s dynamic equation of motion. We first solve for p (  1,e) 
from (20) and (26)-(28), the result being 

fj( 1 , O )  = (sA + +) cos I 9 +  constant. 

Similarly, we use Q, = - ( l / r )  sin I9 (d f /dr )  to obtain 

Equations (31) and (32) are now inserted into (24). After integration this yields 

exp ( -si) - Dp -$(sA + +). (33) 1 - 1 s8+s+2s4+2 F x = + ZA+-+C 
[ s  S 

We now substitute the values of A and C from (29 )  and (30), respectively, and 
eliminate px in favour of Up by means of (25 ) .  After some algebra we obtain 

Finally, this value of Dp and the above values of A and C yield 
Up = (91s) ( 1 + 84) [( 2/6 + 1) s + 9 ~ 4  + 91-l. (34) 

These equations can in principle be inverted to yield the sphere’s velocity and, 
together with (16), the time-dependent stream function. 

2.3. Results 

Sphere’s velocity. We are presently interested only in Up(t), especially for values of 
6 6 10-2. We thus neglect unity compared to 2/6 in the denominator of up and 
rewrite (34) as 

where y z  -;a+ 3i(+S)i, p z -28- 3i(gs)+. (37) 
Equation (36) is now inverted term by term using the inversion formulae 
(Roberts k Kaufman 1966): 

1 
- -- (1 - exp [(a- ib)2t] erfc [(a - i b )  t*]} (38) 

1 
s(s4 + a - ib) (a - ib) L-1 

1 
= exp [(a-ib)2t]erfc[(a-ib)t+]. L-l si(s+ + a - ib) and (39) 
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The inverted sphere velocity up is thus given in terms of complementary error 
functions of complex argument, and is therefore not amenable to numerical 
computation. A more useful representation can be obtained by using the auxiliary 
function W [ Z ( X  + i Y ) ]  defined by (Abramowitz & Stegun 1964, p. 297) 

W ( Z )  = exp ( - Z2)  erfc ( - i Z ) ,  (40) 

whose real and imaginary parts are tabulated for various values of X and Y .  
We therefore put (a  - ib) t i  = - iZ and (a + ib) tk = - ic, and find, for 6 < 1, 

Up(t) = 1 + (3/4i, (&&)a [W(Z)  - W(C)] - +[W(Z)  + W(<)l. (41) 

Now, in view of the properties of W ( Z ) ,  and since 5 = -z, where the overbar 
implies a complex conjugatle, we can write W(5)  = W ( 2 ) .  This enables us to 
write (41) as 

U,(t) = 1 + #($&)sIm W ( 2 )  -Re W ( Z ) ,  (42) 

where 2 = [ I  + Qi(@)S] T*. (43) 

In  the definition of 2 we have put T = 86t. Physically, this quantity is the ratio 
of actual time to the relaxation time of the sphere, defined by (Fuchs 1964; 
Rudinger 1964) 

rd = ZR2/9v6. (44) 

Equation (42) is the most important result of this paper; it gives the sphere 
velocity in terms of the tabulated functions Im W ( 2 )  and Re W ( 2 )  for any value 
of 2 = X + iY, where Y = Q( &a)* X and X = Ti. However, when 6 is very small, 
we can obtain explicit expressions for ImW(2) and ReW(2) by expanding 
W ( 2 )  for small values of Y .  Using the definition of W ( Z ) ,  we obtain 

Re W ( 2 )  z cos [3(+3)4 TI [exp ( - T )  - 3(6/2n)i Ti]  

+ (2/714) F(Ti) sin [3(46)$ TI (45) 
and 

Im W ( 2 )  z (2/nB) P(T4) cos [3(96)4 T ]  -sin [3($6)4 T] 
x [exp ( - T )  - 3(6/2n)* Ti],  (46) 

where F(T) = exp ( -  ~ 2 ) I ~ ~ e u ' d u  (47) 

is Dawson's integral. 

that the drag on the sphere is given by 
It is of interest to compare our result for Up with that obtained by assuming 

F!$) = 1 -Up, (48) 

i.e. with Uks) = 1 -exp (-TI). Table 1 presents this comparison for various 
values of 6. It is seen that for these values of 6 the difference is small, except for 
small T ,  and that, as 6 decreases, the difference also diminishes. In fact, in the 
limit S + 0 our result (42) reduces to that obtained using the Stokes drag. 
Physically, this means that, owing to the fact that its inertia is large compared 
with that of the surrounding gas, the sphere is at every instant in a quasi-steady 
Stokes flow. In  other words, as the sphere accelerates from rest the fluid in its 
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T* 
0.02 
0.04 
0.06 
0.08 
0.10 
0.20 
0-40 
0-60 
0-80 
1.00 

TABLE 1 

r 
s = 10-2 

0.00517 
0.01 11 1 
0-01 7 80 
0.02522 
0-03335 
0.08378 
0.22257 
0.38667 
0.54806 
0.68694 

Numerical 

s = 10-3 s = 10-4 

0.00191 
0.00461 
0~00810 
0.01237 
0-0 1739 
0.05348 
0.17200 
0.32970 
0.49707 
0.64958 

0.00878 
0.00255 
0-00502 
0.00827 
0.01231 
0-04374 
0.15554 
0.31106 
0.48047 
0.63765 

comparison of (42) with ULs) = 1 - 

U p  

0.00040 
0.00 160 
0.00360 
0.00640 
0-00996 
0.03922 
0.14786 
0-30233 
0.47271 
0,63213 

-exp( -T) 

' S=O'  I I I I 
1 I 1 

1 .o 

- 

- 

- 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

T4 
FIGURE 1.  Ratio of the sphere velocity derived from Stokes's law to  that predicted by (42). 

vicinity is subjected to new boundary conditions, so that, in general, the sphere 
is surrounded by a flow field which is changing continuously. However, when the 
density of the sphere is large its acceleration is small, and the fluid in its vicinity 
adjusts to the new conditions in a time which is small compared with the time 
over which conditions change significantly. On the other hand, when I3 is not 
infinitesimal, the differences are more significant, as is shown in table 1, or in 
figure 1, where the ratio UkS)IUD is plotted versus T3 for various values of 8. 

Also of interest are the initial and asymptotic forms of (42). For T < 1, using 
(45) and (46), or the known series expansion for W ( Z ) ,  we obtain 

Up M 6(6/2n)&T*. (49) 
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T+ 6 = 10-2 s = 10-3 s = 10-4 FLS) 

0.02 
0.04 
0.06 
0.08 
0.10 
0.20 
0.40 
0.60 
0.80 
1.00 

6.97427 
3.97150 
2.96276 
2.45205 
2- 140 15 
1.46971 
0.99632 
0.70961 
0.48773 
0.31791 ’ 

2.88895 
1-93855 
1.61817 
1.45472 
1-35360 
1.21190 
0.89597 
0.69854 
0.51142 
0.34910 

1.59706 
1.29570 
1.19302 
1.13942 
1-10500 
1.01145 
0.86582 
0.69763 
0.52190 
0.36160 

0.99960 
0.99840 
0.99640 
0.99358 
0.99004 
0.96078 
0.85214 
0.69767 
0.52729 
0.36787 

TABLE 2. Numerical comparison of FS from (51) with 3’:s) = exp ( - T) 

X P i U 0 7 d  

-.-Ap- 7 

Tt 6 = 10-2 s = 10-3 s = 10-4 X ~ ’ / U o 7 ,  

0.10 0.00022 0~00009 0.00006 0.00004 
0.20 0.00182 0~00109 0~00090 0.00078 
0.40 0.01978 0.01465 0.01300 0.01214 
0.60 0.08024 0.06512 0.06019 0.05767 

0.21124 0.181 73  0.172 11 0.16729 0.80 
1.00 0.43591 0.38956 0.37506 0.36787 

TABLE 3. Numerical comparison of XD/uo7d from (52) with XLs)/u0rd = T- ULS’ 

This eqwtion can also be obtained, except for a factor of 4 2 ,  from simple 
energy considerations of the initial flow over a flat plate, when the free-stream 
velocity is locally given by 3 sin 8. Finally, as T -+ co, the asymptotic series for 
W ( 2 )  given by Abramowitz tL Stegun (1964) yields (for small but finite 6) 

Up E 1 - $(6/2n)B/Tg, (50)  
instead of the exponential limit predicted by Stokes’s law. 

Displacement and drag. For completeness, we present results for the sphere’s 
displacement and drag. The drag is found directly from (41) together with 
l2W(C) - Z2w(z), the result being 

Fx = 3(6/2nT)& + (I/T) Re [Z2W(Z) ]  - (3/2T) (&?)QIm [Z2W(Z)].  (51) 
The displacement is obtained from ( 4 2 )  by integration, the function “ (2)  

being integrated as follows: 

where d = #(&3):. Interchanging the order of integration in the second term, we 
obtain 

The final result for the sphere’s displacement is 

1 = [l + 2iz/2/n - W ( Z ) ] / (  1 + id)2. 

X , / U , , ~ ~  = T-(1+$6)-1[1-Re W(Z)-$(#)&Im W ( Z ) ] .  (52 )  
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Tables 2 and 3 compare some values of P! and X p / ~ , , ~ d  as predicted by (51) 
and (52 )  respectively, with Pp) and X k s ) / ~ 0 7 d .  Here X k s ) / u o ~ d  = T - 1 + exp ( - 2') 
is the non-dimensional displacement obtained using the instantaneous Stokes 
drag FF). 

3. Discussion 
The response of a rigid sphere to an acoustic pulse has been studied by means 

of an approximate model. The model neglects diffraction of the pulse front, and 
ignores finite Reynolds number effects in dealing with the transient problem. 
The latter effects are probably quite significant, as the work of Ockendon (1968) 
shows. Nevertheless, our results should provide a first approximation for the 
sphere displacement in the small Reynolds number limit. Our results also show 
that, when S is not infinitesimal, sphere trajectories differ considerably, especially 
for small times, from those computed using the Stokes drag. This result is of 
some importance in the study of shock-induced droplet collisions in aerosol 
clouds. Finally, for 6 +- 0 our results reduce to those obtained using the Stokes 
drag. This limiting behaviour had been noticed previously (Temkin & Dobbins 
1966) and provides further support for the use of the Stokes drag in some un- 
steady, small Reynolds number flows of dusty gases. 

The author is grateful to Dr D. G. Briggs for some helpful discussions, and to 
Mr J. M. Reichman for his help with the numerical computations. This work was 
partially supported by the National Science Foundation. 

Appendix. Inviscid solution 
We consider a unit-step acoustic pulse travelling in a dispersionless medium 

with a speed a and reaching the edge of a sphere at  t = 0. The resulting motion 
can be described by the sum 9 of an incident potential q5i and a scattered wave 
potential q5s. If the sphere's centre is initially at  x = 0 and the pulse is travelling 
along the x axis, q5i is given by 

with 
q$(x, t )  = z + I - ct, 

q5&) = 0 for x 3 -1, 

where c = aR/v. The scattered potential is given by the solution of 

and must, together with q5i, satisfy the conditions a$/ar = U,cos8 on r = 1, 
Vq5 + e,  as r -+ 03, and U, = 0 for t < 0. The Lsplace transforms of (A 1) and 
(A 3) are 

a2#s/at2-C2v2q5s = o (A 3) 

g5i = A(s )  exp ( -  Kx) 
and V2$s = K2$s, (A 5 )  

(A 4) 

where A ( s )  = - (c/s2) exp ( - K )  and K = s/c. The solution of (A 5 )  can be 
written as - w 

$s = C in(2n+ l)C,h~)(iKr)P,(cosB), 
n=O 
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where hi )  is the spherical Bessel function of the third kind and Pn(cos8) is the 
Legendre polynomial of order n. Similarly, the transformed incident potential 
has an expansion of the form 

00 

$& = A ( s )  i"(2n+ l)j,(iKr)Pn(cos8), (A 7) 
n=O 

wherej, is the spherical Bessel function of the first kind. Because of the boundary 
conditions, we find that the only non-zero term is that with n = 1, so that (drop- 
ping the superscript on @)) 

6 = 3i[Aj1(iK?') +Clhl(iK~)] cos 6'. (A 8) 

Now, in terms of $, the pressure is given by p = - aq5/at, so that f j  = - cK6 and 
the transformed pressure drag is - 

F, = +iKc[Aj,(iK) + C,h,(iK)]. 

By using (A 8) together with the boundary conditions on r = 1 we obtain 

Op = - 3K[Aj;(iK) +C,h;(iK)], (A 10) 

where the primes denote dif'ferentiation with respect to the argument. The 
constant C, is obtained from (A 9) and (A 10) by using = (2cK/96)op: 

j , ( iK) 6- iKji(iK) 
h,(iK) 6- iKhi(iK)' 

c, = -- A(s) 

These results can be greatly simplified because the Bessel functions appearing 
in (A 11) can be expressed in terms of elementary functions (see, for example 
Abramowitz & Stegun 1964, chap. 10). We substitute the explicit values of j,, 
h,, j '  and hi into (A 11) and (A 9) and obtain, after a lengthy but straightforward 
calculation, 

I?, = #[2 + 6+ ( 2  + 6) K-tKzI-1. 

F, = +c sin (ct) exp ( - c t ) .  

(A 12) 

(A 13) 

We invert this result for 6 small and obtain 

Similarly, the sphere velocity Up and fluid tangential veIocity at r = 1 are found 
to be 

Up(t) = $&{I -exp ( - ct) [sin (ct) + GOS (ct)])  

u8( 1,8, t )  = - ;sin O(1- exp ( - ct) [sin (ct) + cos (ct)]) .  

(A 14) 

(A 15) 

Up = $6, ue(l,8) =-+sine.  (A 16) 

and 

For t -+ 00 these yield the classical results 

However, these values are reached rather rapidly. For instance, when ct = 5 ,  
where ct = at ' /R and t' is the real time, luol > 0*99(3sin&3). Since our viscous 
model assumes (A 16) as the initial conditions, it  appears that its validity is 
limited to times of the order of 5Rla or larger. In  terms of the variable T in (42), 
this criterion imposes t,he condition T > (5R/ard) .  For a 20pm sphere in air, 
for example, our results would then be limited to values of T > 10-4. For times 
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less than 5Rla it is necessary to consider the transient scattering of an acoustic 
pulse in a viscous gas. This can be done by means of a, method entirely similar 
to  the one used in this appendix, but taking into account transversely scattered 
waves of viscous origin. 
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